

Fueling our Muscles

Carbohydrates ~ Protein ~ Healthy Fats

AGSD Houston Sept 21 2019 SL.Reason RN MScN EdD

What happens when we

EAT

https://www.slideshare.net/RozPaws/ketogenic-diets

https://opentextbc.ca/anatomyandphysiology/chapter/24-1-overview-ofmetabolic-reactions/

Carbohydrate (сно)

Fruit, Vegetables, Grains, Beans

Carbohydrates \rightarrow glucose

- There are different types of CHO simple/complex/refined/unrefined
- When we eat CHO, our bodies break them down into simple sugars, which are absorbed in the bloodstream.
- As the sugar level rises in our bloodstream, the pancreas releases a hormone called insulin
- Insulin helps to regulate blood sugar levels by stimulating muscle, fat, and liver cells to absorb glucose

GLYCOLYSIS – breakdown of glucose \rightarrow ATP

Carbohydrates

- If we eat more CHO then our bodies require, the body stores them in the liver and muscle (glycogen) and coverts the rest to fat
- However, in GSDV, CHO metabolism is impaired
 - We cannot access MUSCLE GLYCOGEN (80% of stored CHO)
 - Muscle glycogen stores are always full, therefore excess CHO will be stored as fat

GLYCOGENOLYSIS – breakdown of glycogen to glucose \rightarrow ATP

However, it is important to remember that glucose metabolism is not completely impaired in GSDV. LIVER GLYCOGEN (AEROBIC) BLOOD GLUCOSE (AEROBIC) MUSCLE GLYCOGEN (ANAEROBIC)

Meat, Dairy, Nuts, Eggs, Fish

Protein \rightarrow amino acids

- 20 amino acids ~ 9 of which are essential & must be consumed in the diet
- Protein is a building block to build, strengthen, and repair the body and generally not used for energy
- However if we do not get enough calories from other nutrients, protein can be used for energy

GLUCONEOGENESIS – generation of glucose from non CHO substrates \rightarrow ATP

Healthy Fats

Oils, Nuts, Dairy, Meat, Olives

HEALTHY FATS \rightarrow FATTY ACIDS AND GLYCEROL

- Fats are complex molecules composed of fatty acids and glycerol
- The body needs fats for growth and energy
- Fats are also used to synthesize hormones and other substances
- Fats are the SLOWEST source of energy, but the MOST energy efficient
 - Each gram of fat supplies the body with 9 calories of energy; more than twice supplied by protein or CHO (4 calories)

HEALTHY FATS \rightarrow FATTY ACIDS AND GLYCEROL

LIPOLYSIS – Triglycerides must be first broken down into fatty acids and glycerol FATTY ACID OXIDATION OR β -OXIDATION

- Fatty acids are oxidized into acetyl CoA -> ATP
- Glycerol enters glycolysis pathway -> ATP
- KETOGENESIS Formation of ketone bodies in the liver in response to low blood glucose \rightarrow ATP

KETOLYSIS – Utilization of ketone bodies (muscle, heart, brain)

Healthy Fats \rightarrow fatty acids and glycerol

High CHO **High Protein** Low Carb Ketogenic Diet Low CHO

Composition C~F~P	High CHO 65%~20%~15%	High Protein 43%~29%~ <mark>28%</mark>	High Fat 10%~70%~20%
Overview	 -Constant day-time supply of blood glucose -Simple CHO are quickly digested -> rapid energy -Top up liver glycogen -37g sucrose 5 min before exercise 	-Repair muscle cells -Amino Acids can be used as energy	-Up-regulate fat metabolism -Improve activity tolerance* -Minimize risk of secondary conditions associated with dietary sugar* -10%/75%/15% -> .5mmol/L
Considerations	 -Risks associated with (too much) dietary sugar – obesity, heart disease, diabetes, cancer, etc. Insulin prevents fat breakdown Not practical for ADLs 	-Other health conditions	-Other health conditions -Diet compliance
Research	Nogales-Gadea et al (2015) Quinlivan et al (2014) Andersen & Vissing (2008) Lucia et al (2008) Andersen (2008)	Quinlivan et al (2014) Maclean (1998) Kushner (1990) Jensen et al (1990) Slonim & Groans (1985)	Løkken et al (2019) Reason et al (2017)* Orngreen et al (2009) Andersen et al (2009) Vorgerd & Zange (2007)
Limitations	-Small sample size	-Single case studies -Not blinded	-Anecdotal* -Clinical trials underway

Anecdotal reports of individuals with McArdle disease following a Low CHO diet to achieve improved activity tolerance

Is one MACRONUTRITIENT better able to fuel McArdle muscle?

It may depend...

- Genetics disease causing/modifying mutations
- Physical Activity (*ADLs) vs. Exercise
- Access to Care/Information

œ

- ☞ Lifestyle Active vs. Sedentary
- Aerobic Capacity ability of heart and lungs to get oxygen to muscles

? CONDITIONED vs DE-CONDITIONED

- Diet composition/satisfaction/compliance
- Comorbidities other health conditions
- Environment ambient temperature/wind/terrain

At present, there is not enough CLINICAL evidence to support a specific nutrition management strategy (Quinlivan et al, 2014)

AEROBIC CAPACITY

is the primary modifier for disease severity (perhaps) independent of which nutrition management strategy is followed.

Food for Thought

- Eat whole foods
- Choose healthy Fats (nuts, avocados, olive oil, eggs, cheese)
- Stick to complex/unrefined CHO (vegetables, grains, fruit)
- Eat to satiation
- Do not mix high fat with high CHO (processed foods)
- Consult your physician
- > 37g sucrose 5 min pre-exercise (bi-weekly)
 - Equal to a can of Coke or 9 ¼ teaspoons of sugar
- Stay hydrated

- Quinlivan R, Martinuzzi A, Schoser B, (2014) Pharmacologic and nutritional treatment for McArdle disease. The Cochrane Database Systematic Review, 12 (11) doi: 1002/14651858.CD003458.pub5.
- Lucia A, et al., (2008) McArdle disease: What do neurologists need to know? Nature Clinical Practice Neurology, 4(10), 568-577. [18833216] doi: <u>10.1038/ncpneuro0913</u>
- Andersen, S.T., and Vissing, J. (2008) Carbohydrate- and protein-rich diets in McArdle disease: effects on exercise capacity. J Neurol Neurosurg Psychiatry 79: 1359-1363.
- Lucia, A., Nogales-Gadea, G., Perez, M., Martin, M.A., Andreu, A.L., and Arenas, J. (2008a) McArdle disease: what do neurologists need to know? Nat Clin Pract Neurol 4: 568-577.
- MacLean, D., Vissing, J., Vissing, S.F., and Haller, R.G. (1998) Oral branched-chain amino acids do not improve exercise capacity in McArdle disease. Neurology 51: 1456-1459.
- Kushner, R.F., and Berman, S.A. (1990) Are high-protein diets effective in McArdle's disease? Arch Neurol 47: 383-384.
- Jensen, K.E., Jakobsen, J., Thomsen, C., and Henriksen, O. (1990) Improved energy kinetics following high protein diet in McArdle's syndrome. A 31P magnetic resonance spectroscopy study. Acta Neurol Scand 81: 499-503.

Slonim, A.E., and Goans, P.J. (1985) Myopathy in McArdle's syndrome. Improvement with a high-protein diet. N Engl J Med 312: 355-359.

- Orngreen, M.C., Jeppesen, T.D., Andersen, S.T., Taivassalo, T., Hauerslev, S., Preisler, N., Haller, R.G., van Hall, G., and Vissing, J. (2009) Fat metabolism during exercise in patients with McArdle disease. Neurology 72: 718-724.
- Andersen, S.T., Jeppesen, T.D., Taivassalo, T., Sveen, M.L., Heinicke, K., Haller, R.G., and Vissing, J. (2009) Effect of changes in fat availability on exercise capacity in McArdle disease. Arch Neurol 66: 762-766
- Vorgerd, M., and Zange, J. (2007) Treatment of glycogenosys type V (McArdle disease) with creatine and ketogenic diet with clinical scores and with 31P-MRS on working leg muscle. Acta Myol 26: 61-63.
- Reason SL, Westman EC, Godfrey R, et al. Can a Low-Carbohydrate Diet Improve Exercise Tolerance McArdle Disease? J Rare Disorders Diagnosis & Therapy. 2017, 3:1.
- Løkken et al (2019) Modified ketogenic diet in patients with McArdle disease Part A https://clinicaltrials.gov/ct2/show/NCT03843606

